What’s a side chain that’s curvy gotta do with scurvy? Proline isn’t *pro*-lines & it’s definitely *anti* α-helix!  But it’s a pro at being structurally awkward! Proline (Pro, P) may just be the wackiest amino acid… Although if you want to get technical about it, it’s actually an “imino” acid because it has a secondary instead of a primary amine group but really, In functional terms it is an amino acid – it gets coded for & inserted into growing protein chains just like any other. It’s just special…

Technically-speaking, proline is not an “a”mino acid – it’s an “i”mino acid – but this is really just a naming thing. Biochemically and functionally, it’s an amino acid – it serves as a protein letter (albeit a quirky one), getting coded for by 3-letter RNA “codons” (in the case of Pro, CCU, CCA, CCC, & CCG) and added to a growing chain during protein making, just like any other. The reason for the letter difference (a versus i) is that, since the N is hooked up to 2 carbons in the free form, it’s called a “secondary amine” instead of a “primary amine” and that gives it the chemical name α-imino acid (the a just refers to the fact that the N is hooked to the alpha carbon – this part doesn’t change).

But the imino business does have consequences! All the other amino acids’ side chains (R groups) only connect to the “generic” backbone at the central carbon (C)(Cα) BUT proline’s side chain comes off Cα, loops around & connects to backbone’s nitrogen (N). Normally when amino acids link together (through peptide bonds), this N still has an H so it can act as a H-donor in non covalent hydrogen bonds with the Os of other amino acids’ backbones to form secondary structures like  a helices & beta strands. Let me explain…

Basically next-door-neighbor atoms join together in strong “covalent bonds” when they share pairs of electrons, but they can also interact through weaker attractions that don’t involve electron housing rearrangements. Electrons are negatively-charged subatomic particles that whizz around in “electron clouds” around a dense central core called the atomic nucleus where positively-charged protons (with some gluing together help from neutral neutrons) are tasked with reigning them in. In a neutral molecule, the # of protons = the # of neutrons. If there’s a “full” imbalance meaning you have more electrons than protons or vice versa, you get a formal charge and we call such charged particles ions. More electrons than protons gives you a negatively-charged ANION & more protons gives you a positively-charged CATION. 

The # of protons an element has is fixed – it’s what defines an element (e.g. carbon has 6 and will always have 6 and hydrogen has 1 and will always only have 1 – if it had 2 it’d be helium). But the electrons, especially the more loosely-held outermost ones called valence electrons can roam around a little and even get lured away. They have to get fully lured away to give you a full charge, but they can get lured a little farther away from their “owning” nucleus without leaving when they’re in an unfairly-shared covalent bond. In such “polar covalent bonds” 1 atom is electron-hogging (electronegative) and it pulls their shared electrons closer to it, leaving its neighbor partly positive, and making itself partly negative.

As we’ve revisited over and over (and will continue to revisit over and over because nature does too cuz it’s that fundamental) opposite charges attract – even partial ones. So the oppositely-charged regions of polar molecules can get attracted to one another.

Some atoms, like oxygen (O), & nitrogen (N) are really electron-hogging (electronegative), but poor little hydrogen only has a single proton to try to persuade electrons to hang out with it. So when H is in a covalent bond with an N or an O, it usually has its electron party pulled away, leaving it partly positive – and thus happy to interact with a partly negative part of another molecule. Oxygen & Nitrogen often have “lone pairs” of electrons – pairs of electrons that aren’t shared with another atom and thus are kinda like little negative charge bundles. So partly-positive H’s can get attracted to them and hang out. They don’t share the electrons (no housing rearrangements) but the charge-based attraction is stronger than most non-covalent bonds.

So, I’m going through all this work telling you about them – just to tell you that proline’s backbone N can’t form them! Normally, the generic backbone offers 2 locations for H bonding. The carbonyl (C=O) provides an H-bond acceptor in the form of the O and the amino group provides an H-bond donor in the form of the N-H. So backbones can interact through H-bonds to give a protein its secondary structure (common “structural motifs” like helixes, sheets, etc) 

BUT P’s N doesn’t have this H because it’s “been replaced” by a bond to side chain. So it can’t act as a donor. So it doesn’t want to form α-helixes, and if it’s in them it’ll make them kinky. It can also make other places kinky because the side chain contortion “locks” N-Ca bond in place, giving to limited backbone flexibility – even limited-er than usual – all protein backbones have limited flexibility because the peptide bonds linking them together get stabilized by resonance (electron delocalization where “extra” electrons are shared among more than just 2 atoms), which can only happen if Ca, N, & O are in the same plane, so you end up with a chain of planes where you can only rotate at certain places in the backbone (C-Cα (psi) & Cα-N (p i)). And even those rotations are restricted by steric hindrance (can’t have atoms colliding with one another so bulky side chains restrict movement more). 

You can see this if you look at a Ramachandran Plot, which shows the backbone angles taken by atoms in a molecule – usually colored heat-map style to show you the most common and least common angles. When we’re solving a crystal structure (more later) we often check that the angles are geometrically solid & one of the things you’ll see in the “report card” for a structure is “Ramachandran outliers.” And usually it’ll be reported as “non-glycine,” “non-proline” Ramachandran outliers – basically glycine can “break the normal rules” because it’s so small (its side chain’s just an H) so it’s ok to find it at weird angles Proline can also break the rules, but instead of being able to move lots more ways, like glycine, it just has “different rules” – it’s restricted to different angles. Here’s the link for the paper in the figure: https://doi.org/10.1002/prot.10286 

Despite being kinda opposites, these 2 amino acid outlaws (proline & glycine) often work as partners in crime (or more like partners in cool chemistry). They’re often found together in sharp turns, where Pro helps reinforce the kink & G’s small enough to squeeze in.

I’ve been talking about how P doesn’t like to form the common a-helix, but chains of it can form a special kind of helix called a polyproline helix that’s in collagen and consists of 3 really long (>1400 amino acids) polypeptide chains (2 α1 & 2 α2) in a cool triple helix, with repeating sequences of Gly-X-Y, where X or Y can refer to proline or hydroxyproine (proline can be in either place but hydroxyproline can just be in Y) 

“Hydroxyproline” is just proline that gets a hydroxyl (-OH) group added on “after the fact”  during protein making in the endoplasmic reticulum (ER) – a membrane bound “room” in your cells where some proteins get extra help getting made if they require modifications and/or shipping. The genetic instructions tell the protein-making ribosomes to add proline to the growing chain and the protein enzymes (reaction mediators) collagen prolyl 4-hydroxylase or prolyl 3-hydroxylase. The hydroxyl can get added to the “4” or the “3” position, to give you 4-hydroxyproline & 3-hydroxyproline (with 4 dominating ~ 100:1, so it’s usually what people are talking about if they don’t specify a number. 

Enzymes are able to speed up reactions without getting used up themselves because they “just” bring the reactants together in the right orientation, environment, etc. but they’ve just led a horse to water, not made it drink. In the case of proline hydroxylation, the oxygen comes from molecular oxygen and the enzyme needs some help getting it to go on – vitamin C (and α-ketoglutarate (which loses CO2 and takes one of the O2’s Os to become succinate, as well as iron) to the rescue. It requires ascorbic acid (vitamin C) as a cofactor. So if you want to make strong collagen, you need vitamin C – this is why scurvy (vitamin C deficiency) causes defective collagen leading to your teeth falling out and your skin bruising easily. So even though we can make proline (it’s non-essential) we can’t make vitamin C so you can’t make proper collagen without vitamin-C! 

There are different kinds of collagen and the Rutger’s Protein DataBase (PDB) has a great article about it as one of their “molecule of the month” pieces. https://pdb101.rcsb.org/motm/4  In the pics you’ll find a picture from that page showing you what the chains look like. Those “pictures” were obtained using a technique called x-ray crystallography. This is a technique where we look at protein structures by bouncing x-rays off molecules’ of molecules’ e⁻ , then capturing those bounced-off x-rays on a detector and working backwards from the pattern of spots (diffraction pattern) to find the bounce-off points. I’m mentioning this here, because of another weird thing about proline that can be discovered (or falsely discovered) using this technique. 

My first experience with crystallography was so cool – actually getting to “see” the bonds you only hear about ( although what we see is really just a “meshy” thing of electron density that we’ve computed based off of a pattern of dots and then built a model into).

Even when you have a hard time making out side chains, the backbone can still be visible. So you can trace those characteristic peptide bond angles, and what you usually see is a “zig zag” When amino acids link together, they almost always attach so that neighboring Cα are on OPPOSITE sides (TRANS conformation) (so you get a zig-zag (/-/)) instead of Cα on SAME side, which we call CIS conformation & gives you a “staple” (/-\) shape. Most amino acids are exclusively in TRANS all the time because this leads to less steric clashing with its neighbors. But for Pro, it’s clash-y either way – and pretty much to the same extent. So, unlike the other amino acids, P can also (though less commonly) adopt a CIS conformation, though it does so with help because the ribosome puts it in trans, and switching. requires disrupting that partial-double-bond-like peptide bond – an enzyme called prolyl isomerase helps convert between trans (which it’s formed as) & cis. This need for enzymatic help in switching can be a holdup point in protein folding, but most Pro doesn’t need to be swapped.

Studying at Cold Spring Harbor Laboratory (CSHL), there are a lot of great perks – like sitting in on the legendary x-ray crystallography course. I will never forget a lecture by the great Jane Richardson (of ribbon diagram & MolProbity fame) about how you can’t just chock modeling problems up to such “cis-Pro” (once scientists first discovered that cis-Pro exists, it became common for weird regions of density to be explained by this strange conformation (e.g. it’s not a model problem – it’s just a cis-Pro!) Big crystallography no-no!). But, these cis-Pro really do exist (they’re more likely to be legit if the preceding letter is Cly or an aromatic amino acid – and when they do they can have great functional significance. 

Collagen is the main protein in your skin (and it’s also in tendons, cartilage, bones, blood vessels, etc.) and your skin’s your biggest organ, so you have a LOT of collagen (~1/4 of your body’s proteins), and ~ 1/3 of collagen is proline, so your body uses a LOT of proline. Thankfully, our body CAN make it, so we call it “non-essential” in the dietary sense.

Proline can be made from the amino acid glutamate in a pathway which involves a couple teps that require enzymatic assistance from pyrroline-5-carboxylate synthase (P-5-C synthase) to form glutamate-5-semialdehye and then (since those enzymes did their job in making a really awkward molecules), spontaneously ring-i-fying to give you pyrroline-5-carboxylate (P5C), which can get lose electrons (and gain an H) to become proline with the help of P5C reductase.

The reaction can also go the other way with the help of dehydrogenases, allowing you to make glutamate from proline (dehydrogenating it with the help of proline dehydrogenase 1 (PRODH) letting you go back through that P-5-C). And if you want, you can then remove the amino group, to convert that to α-ketoglutarate which can be further broken down to give you pyruvate, which can enter the citric acid cycle (aka TCA or Krebs cycle) or get used to make glucose (blood sugar) – so we refer to it as glucogenic. 

Proline is classified as NONPOLAR – not surprising since its side chain just has C’s & H’s, which share fairly fairly. But, although nonpolar amino acids typically avoid water and hang out in the core of proteins, thanks to that turn-making helpfulness, unlike most other nonpolar amino acids, you do find it on the surface of proteins (despite its hydrophobicity, proline takes one for the team).

It was first isolated in 1900 by Richard Willstatter & gets its name from “pyrrolidine” (chemical name for its side chain)🔬

how does it measure up?

coded for by: CCU, CCA, CCG, CCC
chemical formula: C5H9NO2
molar mass: 115.132 g·mol−1
systematic IUPAC name: Pyrrolidine-2-carboxylic acid

more on topics mentioned (& others) #365DaysOfScience All (with topics listed) 👉 http://bit.ly/2OllAB0

Leave a Reply

Your email address will not be published.