Why do pumpkins look orange? BETA-CAROTENE! Orange-yah glad you asked? Hopefully readers will delight if I discuss how these pumpkins steal sunlight! (but only specific wavelengths of it!)

Light is “just” little packets of energy called photons traveling in waves. You can think of them kinda like baseballs wiggling through the air. The balls are all thrown at the same speed (the speed of light) so, when a group of balls is thrown by the pitcher (light source), all the balls will reach the catchers at the same time. But some of the balls have more energy, so they take a wavier route, oscillating up and down more as they travel giving you closer together peaks (higher frequency, shorter wavelength).If you think of slalom racing, it’s like you have a bunch of skiers that all get to the finish line at the same time, but the skiers with higher energy make more S’s during that time.

White light has a combination of “all the colors” – so it’s like the sun is a pitcher throwing lots of baseballs at us, but molecules can “catch” some of the balls and “hide them” so that things look colored. But they can only catch them if they have the right “catcher’s mitt.” These “mitts” – the photon-absorbing molecules (or parts of bigger molecules) – are called chromophores, and different ones absorb different photons (catch different balls). Why? 

They can only “catch a ball” if the photon’s energy is just right for exciting an electron in a molecule. An electron is a type of negatively-charged subatomic particle that molecules use to interact & bond with one another. They can live in different “orbitals” and the highest energy electrons live in the furthest orbitals from the nucleus (the central hub of the atom where the positively-charged protons and the neutral neutrons live). More here: http://bit.ly/33RznDA

It’s kinda like the “electron housing” landlords charge more in rent (in the form of energy) to live further from the central nucleus – out in the outer atomic suburbs. If they get some extra energy income, electrons can afford to move out to a higher orbital, but they can only do this if they pay “exact” change – so they can only absorb photons that have an energy amount equal to the difference between the higher orbital and the current one. 

So who determines the rent? The atoms making up the molecules themselves (with some influence from the local environment). Different molecules have different housing arrangements and different differences in rent between the different housing levels, so “moving up” costs different amounts and, as a result, different molecules absorb photons with different amounts of energy.

And if we go back to that energy-wavelength-frequency-color relationship, this means that different molecules are absorbing different colors of light. And since they’re stealing different slices of the rainbow, the leftovers they leave us with look different. 

For example, if the orbitals are really far apart, it takes a lot of energy for an electron to move to those outer suburbs, so they’ll absorb high-energy (and thus high-frequency, short wavelength) light like blue light. And since they’re stealing that blue light, the light they leave us with (either going through it (transmission) or bouncing off (reflection)) looks yellow-orange-y. (To see what color something will look if it absorbs a color, look across from the absorbed color in a color wheel).

If the orbitals are closer together, the difference in rent is smaller, so they’ll absorb lower-energy photons (lower-frequency, longer-wavelength) – for example, they might absorb red red light & look green. 

I put “exact” energy quotes because there’s a little wiggle room because electrons can have different “vibrational levels” within orbitals and stuff. So if you look at an absorption spectrum for a molecule (which shows you what wavelengths the molecule “steals”) – instead of sharp peaks you see more of bell curves – peaks at the maximum absorption wavelength and some absorption on either side, petering out the further you get from that “optimal wavelength.” And you’ll likely also see multiple peaks because, for example, molecules can have multiple chromophores in the same molecule,

Most of the molecules I study are invisible to us because their orbitals are arranged such that the photons they absorb are outside of the visible range (either too low in energy or too high in energy for us to see) – there’s only a segment of the electromagnetic radiation (EMR) spectrum that we can actually see. We call this the visible spectrum – it spans from wavelengths of about 380-740 nanometers (nm)(a nanometer is 1 billionth of a meter so even the longest of these are pretty dang short).


Speaking of longest – that’d be the red light. It’s at the 740 end and then violet is at the 380 end with the OYGBI of ROYGBIV in between them in that order. Remember longer wavelength is lower energy & lower frequency. There’s a lot of other EMR that we can’t see – below red we have things like infrared & microwaves while above violet we have things like ultraviolet (UV) and x-rays

But it’s easy to see the color of beta-carotene in this pumpkin! If you look at the chemical structure of beta-carotene – or the structure of many chromophores for that matter – you see a bunch of alternating single and double bonds. Atoms link up to form molecules by sharing electrons with their next-door neighbors – pairs of electrons “moving in together” – one pair shared is a single bond & 2 pairs makes a double bond. These covalent bonds normally just involve next door neighbors.

But in the case of resonance – aka electron delocalization – which can happen when you have alternating single and double bonds like in. Beta-carotene- atoms can share electrons with others in the neighborhood – basically the atoms do some “redistricting” so that they can all evenly share some of their electrons. And this often lowers the rent differences, so these molecules often absorb visible light. 

A lot of plants (or at least parts of a lot of plants) look green – and pumpkins do initially too – this is because of a different chromophore, chlorophyll. Chlorophyll absorbs photons to “cash in” for sugar in the process of photosynthesis (plant food-making). Chlorophyll absorbs lower-energy light than beta-carotene – it absorbs reddish light so looks green. 

And since it’s absorbing reddish light, it “hides” the reddish light that beta-carotene leaves behind. So the plant looks green. So some vegetables like kale might look just green, but they’re high in beta-carotene.

Beta-carotene is a “provitamin” – a vitamin precursor – in this case for Vitamin A. “Vitamin A.” You can shell out big bucks for brand-name vitamin A supplements, but “vitamin A” itself’s “generic” – the term’s often used to describe a whole family of interrelated compounds including active RETINOIDS (which are found in animal sources (e.g. liver, kidney, eggs, & milk) & their CAROTENOID precursors (provitamins (vitamin precursors)) which are found in plants (e.g. dark or yellow vegetables)

The retinoids are important for things like vision –  helping us see – and acting as antioxidants (grabbing extra electrons from overly-energetic molecules before they can do damage). More here: http://bit.ly/2Rgr0xQ

Retinoids can be made from carotenoids (some of them) – in animals – so you can only get retinoids “premade” in animal-based food sources – but your body can easily make it from the precursor carotenoids you can get from plants.

There are several types of pro-A carotenoids, The “best” carotenoid in terms of retinoid-making is β-CAROTENE bc it gives you the most bang for your buck – each β-CAROTENE can be split into 2 retinoids, while the other carotenoids (α-carotene & β-cryptoxanthin) only give you 1.  Beta-carotene has highest absorption at 450nm

There are also non-pro-A carotenoids like lycopene (makes tomatoes red) & zeaxanthin (corn-yellower).

Carotenoids absorb violet & blue-green light. This helps capture extra energy and dissipate it as heat before it can do damage. And their pretty colors attract seed-spreaders. 

Chlorophylls (there are multiple types, with chlorophyll a & B being the main photosynthetic pigments) absorb blue & red wavelengths. Chlorophyll a is the most abundant plant pigment & it absorbs at maxima of 430nm (blue) & 662nm (red). But it doesn’t absorb green, so green is seen! The photon-catching is done by a “tetrapyrrolic ring” that holds a metal that helps it with electron transferring. It also has another, not-visible-light-abasorbing part – a long hydrophobic (water-avoiding) tail that lets it embed in membranes. Chlorophyll b has a slightly shifted absorption spectrum (453 & 642 maxima) so it helps expand the range of light that can be captured & used to make sugar. 

more on topics mentioned (& others) #365DaysOfScience All (with topics listed) 👉 http://bit.ly/2OllAB0

Leave a Reply

Your email address will not be published.